

METABOLISM OF 2-(2-THIENYL)ALLYLAMINE HYDROCHLORIDE IN THE RAT:
IDENTIFICATION OF A NOVEL METABOLITE

W. Perry Gordon, James R. McCarthy, and Sai Y. Chang

Merrell Dow Research Institute,
Indianapolis, IN 46268-0470

Received March 30, 1987

A novel metabolite, 2-(2-thienyl)propionic acid, is formed *in vivo* from 2-(2-thienyl)allylamine hydrochloride. Mass spectral analysis suggested 2-(2-thienyl)propionic acid formation involves loss of the amine moiety followed by reduction of the olefinic group. © 1987 Academic Press, Inc.

2-(2-Thienyl)allylamine(2-TAA) is currently under investigation because it rapidly inactivates dopamine- β -hydroxylase in a mechanism-based fashion(1,-2). 2-TAA is well absorbed and extensively metabolized. We report the isolation and identification of 2-(2-thienyl)propionic acid (2-TPA) as the major metabolite of 2-TAA. We also propose mechanisms for its formation.

MATERIALS AND METHODS

2-Acetylthiophene and tosylmethyl isocyanide were purchased from Aldrich Chemical Company. All organic solvents were glass-distilled HPLC grade. BSTFA (*Bis*-(trimethylsilyl)trifluoroacetamide) was obtained from Regis Chemicals. 2-TAA and C-14 2-TAA were synthesized at Merrell Dow Pharmaceuticals Inc., Indianapolis, IN.

2-TPA was synthesized following the method developed by Schöllkopf (3,4) (Fig. 1). 2-Acetylthiophene (6.3 g, 0.05 mol) was treated with 1-equivalent of the anion of tosylmethyl isocyanide generated from tert-butoxide in THF. The crude reaction mixture after work-up was purified by flash chromatography (ethyl acetate:hexane, initially 1:3 then 1:1) to provide 2 (3.2 g, 20%, mp 138-140°C (EtOH)). 2 was hydrolyzed to 2-TPA with ethanol:2N HCl (1:2) at reflux for 15 h under N₂ atm. Kugelkohr distillation provided 2-TPA as a colorless oil, bp 110°C² (2 mm), Lit(4) bp 116-118°C (5 mm). NMR(CDCl₃) δ1.58 (d, 3H, J=7Hz), 3.98 (q, 1H, J=7Hz) and 6.9-7.2 (m, 3H).

Animals. Male Sprague-Dawley (CD(SD)BR) and SHR rats weighing 225 to 250 g were used for the metabolic experiments and allowed free access to food and water throughout the experiment. The rats were housed in Roth-like metabolism chambers. Single oral or intravenous 100 mg/kg doses of 2-TAA were administered to two groups of three rats. Urine, feces and volatiles were collected over a 36-h period. The urine was pooled from 0-18 h and 18-36 h, and stored at -20°C until analyzed. Urines were filtered through Millex-GS 0.22 μm filter units.

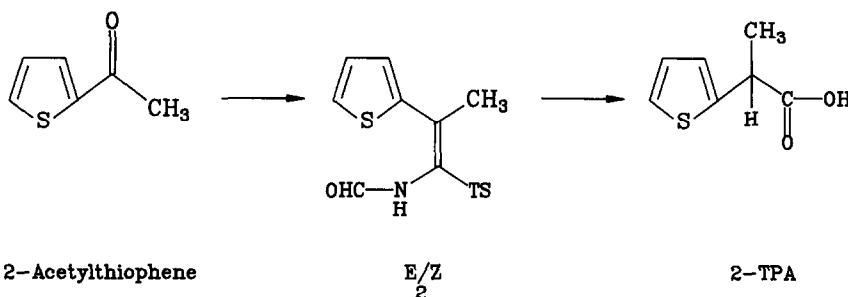


Figure 1. Synthetic scheme for 2-TPA formation.

HPLC Assay. A gradient program was set up for the chromatographic profiling with C-14 detection. Filtered urines were injected directly onto a C-18 ODS column. The gradient conditions were:

mobile phase: 0.1 M ammonium formate A
 CH₃CN B
 flow rate: 1.0 mL/min
 gradient: 100% (A) to 60% (A) linearly

Isolation. The extraction of urine was carried out by acidifying with 0.5 N HCl (0.5 mL) and shaken for 10 min with ethyl acetate (4 mL). The organic layer was separated after centrifugation. The aqueous was re-extracted. The combined organic phase was back-extracted into 0.5 N NaOH (1 mL). The organic was discarded and the aqueous layer acidified with 0.5 N HCl (1.5 mL). The aqueous layer was extracted with ethyl acetate (4 mL). The organic layer was transferred and dried over Na_2SO_4 anhydrous. The organic was then evaporated to dryness under a N_2 stream at room temperature. The residue was derivatized with BSTFA (100 μL) at 60°C for 30 minutes. The solution was diluted with EtOAc (100 μL). This sample was then analyzed directly by GC/MS.

GC/MS Analysis. The derivatized sample was analyzed by a Finnigan MAT 4500 GC/MS system and on-line to an INCOS data system. Analyses were performed in the chemical ionization mode with methane as a reagent gas at 1 torr. The ion source, GLC interface and injection port temperatures were maintained at 120, 260, 250°C, respectively. Samples were introduced via the GC inlet, through which the column was interfaced directly to the ion source of the mass spectrometer. A fused silica capillary column DB-5 (J&W Scientific, Ventura, CA, 10 m x 0.32 mm ID) was used and samples were injected in the splitless mode at 50°C. For the analysis of the TMS derivative of 2-TPA, the column oven temperature was raised linearly at 10°C/min to 250°C. Retention times were measured relative to a homologous series of n-alkanes co-injected with each sample and calculated as methylene unit (MU) values.

RESULTS AND DISCUSSION

When 0-18 h urines from rats given 2-TAA either po or iv were analyzed by HPLC, one major radioactive peak was observed (Fig. 2). The major radioactive peak was extracted from the urine acidified with 0.5 N HCl. No radioactivity was extracted when the urine was basic.

The major radioactive peak was derivatized with BSTFA and positively identified as 2-TPA by its GC/MS properties (Fig. 3.4). This spectrum

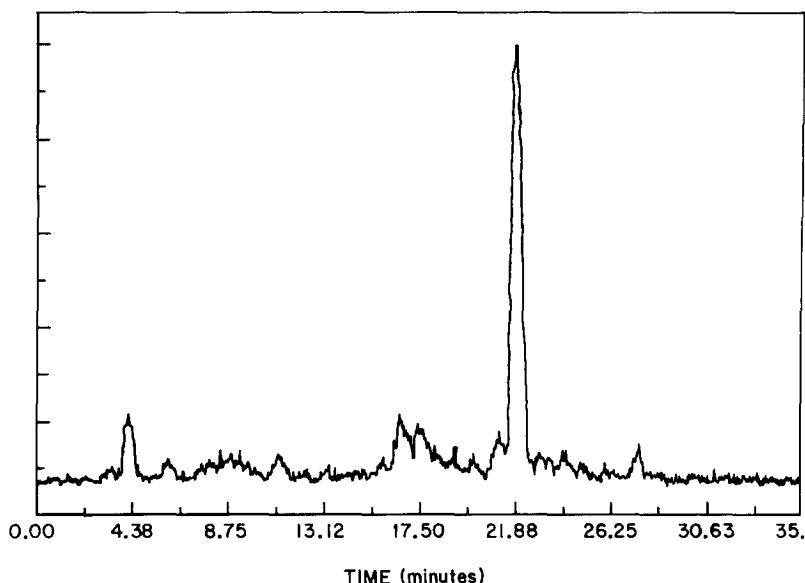


Figure 2. ^{14}C -HPLC profile of urine from a rat given ^{14}C -2-TAA.

exhibited a MH^+ ion at m/z 229 accompanied by prominent $[\text{MH}^+ - \text{CH}_4]$ ion at m/z 213, $[\text{MH}^+ - \text{TMSOH}]$ ion at m/z 139 and $[\text{MH}^+ - \text{HCO}_2\text{TMS}]$ ion at m/z 111 (Fig. 4a). An authentic standard of 2-TPA was found to have mass spectral data, GC retention properties and partition behavior identical to the biologically-derived material (Fig. 4b).

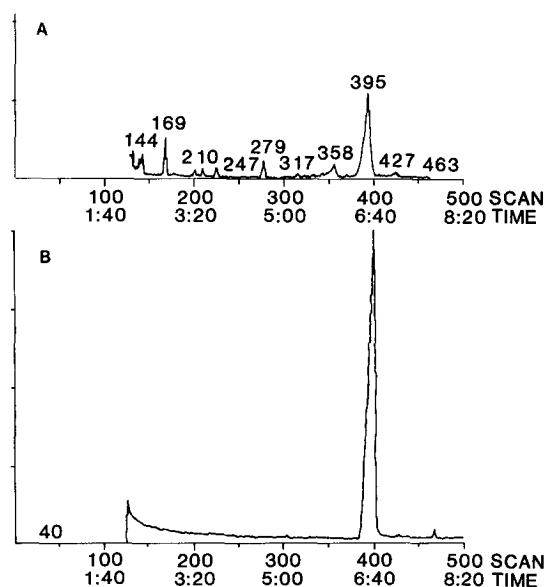


Figure 3. Total ion chromatograms of derivatized extracted urine from rat given 2-TAA A) and derivatized synthetic 2-TPA B).

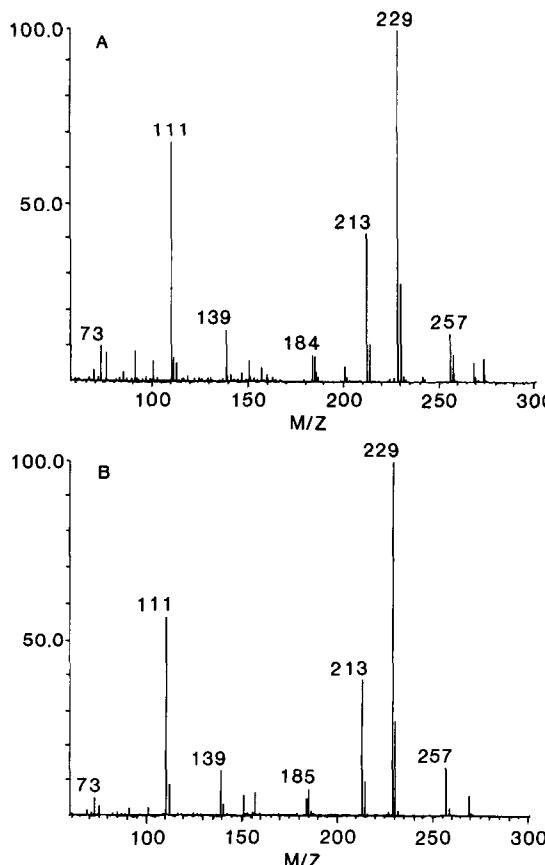


Figure 4. CI mass spectra of biologically-derived 2-TPA A) and synthetic 2-TPA B).

The isolation of 2-TPA as the major metabolite of 2-TAA presents a novel pathway for the metabolism of an allylamine. The formation of 2-TPA *in vivo* from the rat can be rationalized by the pathways presented in Fig. 5. Pathway A represents N-dealkylation of 2-TAA mediated by cytochrome P-450 giving the carbinolamine followed by a breakdown to yield the α , β unsaturated aldehyde. Pathway B represents oxidative deamination of 2-TAA mediated by an amine oxidase yielding the same intermediate as in pathway A. Further oxidation of this intermediate by aldehyde dehydrogenase (ALDH) would give the α , β unsaturated acid. Neither product has been identified but are currently under investigation. Other metabolites, such as the diols, have not been detected.

The next step in the generation of 2-TPA can be explained using an aryl propionic acid isomerase involved in lipid catabolism(5,6).

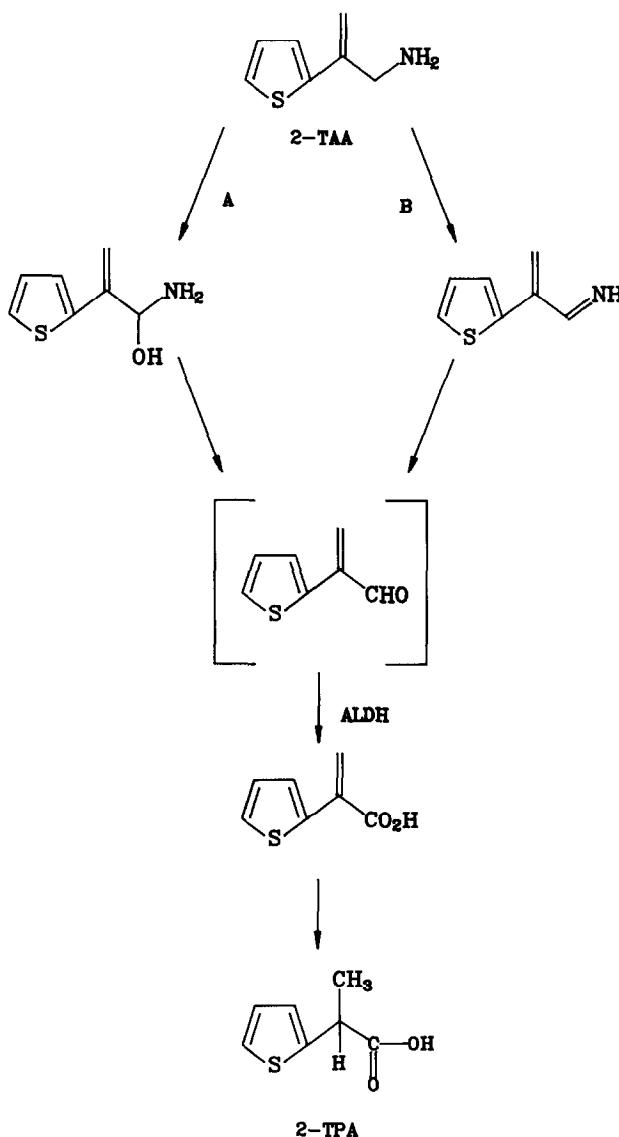


Figure 5. Proposed mechanism for the *in vivo* conversion of 2-TAA to 2-TPA.

Ibuprofen is epimerized at the saturated carbon by this isomerase. A common intermediate in this process was the α , β unsaturated acid derivative which was subject to an enoyl reductase.

We propose that enoyl reductase reduces our unsaturated acid in a similar manner to give the major metabolite, 2-TPA.

Studies on the formation of 2-TPA and several other metabolites of 2-TAA *in vitro* are currently in progress to better define these mechanisms.

REFERENCES

1. Bargar, T. M., Broersma, R. J., Creemer, L. C., McCarthy, J. R., Hornsperger, J. M., Palfreyman, M. G., Wagner, J. and Jung, M. J. (1986) *J. Med. Chem.* 29, 315-317.
2. Silverman, R. B. and Hoffman, S. J. (1984) *Medicinal Res. Rev.* 4, 415-447.
3. Schöllhopf, V. and Schröder, R. (1972) *Angew. Chem. Internat. Edit.* 11, 311-312.
4. Clemence, R., Martret, O. L., Fournex, R., Plassard, G., Daghaug, M. (1974) *Eur. J. Med. Chem.* 9, 390-396.
5. Wechter, W. J., Loughhead, D. G., Reischer, R. J., VanGiessen, G. J. and Daiser, D. G. (1974) *Biochem. Biophys. Res. Commun.* 61, 833-837.
6. Kaiser, D. G., VanGiessen, G. J., Reischer, R. J. and Wechter, W. J. (1976) *J. Pharm. Sci.* 65, 269-273.